Graph Pattern Matching With Hadoop Giraph

John Gilmer, Mentor — Xinh Huynh (GS)

In our work we have leveraged capabilities of Apache's open source software framework, Giraph, to implement a graph pattern matching algorithm. Graphs can be processed intuitively through message passing between vertices
along edges. The software framework Giraph encapsulates this idea and then runs the algorithm in parallel on top of the Hadoop distributed computing framework to achieve quicker processing times. Our work included leveraging

the API of

4 N

Introduction

Advantages of Giraph Implementation
@ Giraph is based on Google’s Pregel model (figure 1)
which has a speed advantage over MapReduce graph
algorithms
€ Open source software is free of use and is being
constantly improved by the community
@ Giraph is built on Hadoop so it can process very large
graphs (Facebook ran a Giraph algorithm on a 1 billion
edge graph)

@@ Superstep 0

(O8] _(698) Supersten 2

DT @D s

Figure 1: Pregel Algorithm for Largest Value

Superstep 1

Process of a Superstep
€ Run user-defined compute function on the vertex
€ Read messages sent to it from the last superstep
€ Send messages to other vertices
€ Modify state of graph

Subgraph Isomorphism Matching Algorithm

2
N Input: Graph G, Walk W
See Figure 2.
. ssh Output: Set of matching sub-
B 3 graphs within G.
4

Figure 2: Example of a subgraph to be
matched. Must be converted to a walk for the

K algorithm to work.

trivial data sets to measure performance.

4 Methods N

Step 1: First we examined Apache’s documentation and code to
understand how the software worked and to plan our
implementation. With their provided examples we implemented
a simple shortest paths algorithm.

Giraphlob
Set Giraph

Vertex
Compute Function
and Message
Handling

Input Format
Builds vertices on

Ouptut Format

Takes graph data

worker from from worker and configurations and

structured Input outputs it sends job to Map
File Reduce

Step 2: Use knowledge of software structure to reformat the
program to run the subgraph matching algorithm.

Algorithm Computation
Simple Shortest Path 1. Read Graph
Algorithm 2. Change Graph Values
3. Output Graph
Subgraph Isomorphism 1. Read Graph
Matching Algorithm 2. Record Set of Subgraphs
3. Output Set

Giraph was set up to do computation processes that are more
similar to that of the Stmple Shortest Paths Algorithm than the
Subgraph Isomorphism Matching Algorithm. To run this slightly
different computation process on Giraph we would have to take

an alternate route.
Pattern: The pattern of vertex and

edge types must be stored somewhere.

This additional constraint 1s handled

by the GiraphJobWithPattern class

? which we wrote to implement a
pattern as a configuration variable.
Graph: The graph does not change at
all so the compute function simply

g waits till a vertex says 1t knows a
matching walk and then 1t tells

AL WorkerContext class to keep track of

b all the matching walks from the

worker.

Output: Normally in a Giraph

program a client writes an output

PATTERN P

Desired Output

fons e @racin
4 <> 3 o> D class and links it to GiraphJob.
4=>9=->"0 GiraphJob then automatically calls 1t

on the graph. Here we do not want to
output the graph, we want a subset of
the graph and so we output from the

WorkerContext class. /

.

-~

Results

Input Pattern P:

S N
v

I
v
& LN
“

L

w w

S BB U N N N NN

Messages Received That Matched Pattern:

Superstep 0
Messages Received:
None
Messages Sent:

3 <1,0,0,0,0>

Superstep 1
Messages Received:

3 <1,0,0,0,0>

Messages Sent:

2 <1,3,0,0,0>
4 <1,3,0,0,0>
5 <1,3,0,0,0>

Superstep 2
Messages Received:

2 <1,3,0,0,0>
4 <1,3,0,0,0>
5 <1,3,0,0,0>

Messages Sent:

<1,3,2,0,0>
<1,3,2,0,0>
<1,3,2,0,0>
<1,3,5,0,0>
<1,3,5,0,0>
<1,3,5,0,0>
<1,3,4,0,0>
<1,3,4,0,0>

vt W W hse N W

Superstep 3

3 <1,3,2,0,0>
3 <1,3,4,0,0>
3 <1,3,5,0,0>

Messages Sent:

<1,3,2,3,0>
<1,3,2,3,0>
<1,3,2,3,0>
<1,3,4,3,0>
<1,3,4,3,0>
<1,3,4,3,0>
<1,3,5,3,0>
<1,3,5,3,0>

vT A& N UM & N O BN

<1,3,5,3,0>

ladoop Giraph to run custom algorithms such as the Subgraph Isomorphism Matching Algorithm. The next step in this project is to link the Giraph implementation to the Accumulo database and run the algorithm on non-

~

4 N

Superstep 4 Superstep 4 1s the final
superstep. All the messages
sent from superstep 3 will
match the vertex type of their
destination which 1s the last
step of the pattern. From here
the code outputs all 9 matching

subgraphs. Superstep 4 sends

I
no messages and all vertices
vote to halt.

Next Steps

Implement Accumulo: We need to move from the current flat file
implementation to the more practical Accumulo DB
implementation as seen 1n figure 3.

Giraph Flat Text
Code File Output
Input
Giraph Accumulo Accumulo
Code DB Input DB Output

Figure 3: Accumulo DB Implementation

Optimization: The current implementation of the algorithm does
not change based on the metrics of the graph. For example 1if
Pattern P (figure 4) exists such that the second vertex type (green)
occurs once 1n the target graph(figure 5) while the first vertex type
(blue) occurs 1000000 times then our message passing portion of
the algorithm would be very inefficient(figure 6). We would send
at least 1000000 messages when we would only need to send 1
(figure 7).

PATTERN P

Graph G Messages

Figure 4: Pattern P of blue node with edge to green node

Graph G

Figure 6: Message passing in current algorithm

Graph G Messages

Figure 5: Graph G with many blue nodes and 1 green

Figure 7. Message passing in optimized algorithy

.

IM Release: LLNL-POST-571213

